Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=6.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

7,7a-Dihydroisoindolo[2,1-a]pyrimidin-12-one

The crystal structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate a $C(6)$ chain. The dihedral angle between the isoindoline group and the naphthalene ring system is $24.96(12)^{\circ}$.

Comment

The present work is part of a structural study of compounds of 3-substituted phthalides (Odabaşoğlu \& Büyükgüngör, 2006). When we used phthaldehydic acid (2-formylbenzoic acid) and naphthalene-1,8-diamine as starting materials, aiming to synthesize 3-[(8-aminonaphthalen-1-yl)methyl]isobenzofuran$1(3 \mathrm{H})$-one, (II), we obtained the title compound, (I), unexpectedly (Fig. 1 and Table 1).

Received 7 June 2006
Accepted 12 June 2006

The isoindoline group ($\mathrm{C} 1-\mathrm{C} 8 / \mathrm{N} 1$) and naphthalene ring system are planar, the largest deviations from the mean planes being 0.029 (2) and $0.012(3) \AA$ for atoms N 1 and C 10 , respectively. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which generate a $C(6)$ chain (Etter, 1990), and also by $\mathrm{C}-\mathrm{H} \cdots C g 1$ interactions ($C g 1$

Figure 1
A view of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2
A packing diagram for (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) $\frac{1}{2}-x, y, \frac{1}{2}+z$.]
is the C2-C7 ring centroid; Fig. 2 and Table 2). The dihedral angle between the isoindoline group and the naphthalene ring system is $24.96(12)^{\circ}$.

Experimental

The title compound was prepared (see scheme in Comment) as described by Odabaşoğlu \& Büyükgüngör (2006) using phthaldehydic acid (2-formylbenzoic acid) and naphthalene-1,8-diamine as starting materials (yield 95%; m.p. 534-535 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$Z=4$
$M_{r}=272.30$
Orthorhombic, Pca2
$a=19.8550$ (13) \AA
$b=4.7939$ (3) A
$c=13.6612(13) \AA$
$V=1300.31(17) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration (X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.945, T_{\text {max }}=0.981$
$T=296 \mathrm{~K}$
$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
Plate, light brown
$0.62 \times 0.47 \times 0.21 \mathrm{~mm}$

12797 measured reflections
1327 independent reflections
1146 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.056 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$S=1.01$
1327 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.11 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.022 (3)

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.228(3)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.466(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.362(3)$	$\mathrm{C} 9-\mathrm{N} 2$	$1.408(3)$
$\mathrm{C} 8-\mathrm{N} 2$	$1.443(3)$	$\mathrm{C} 17-\mathrm{N} 1$	$1.405(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$106.14(19)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$102.40(17)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$108.83(15)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 17$	$129.75(19)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$114.97(19)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8$	$112.93(18)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 1-\mathrm{C} 1$	$23.2(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$170.29(17)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 17$	$-52.9(2)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.89(3)$	$2.17(3)$	$2.959(3)$	$148(2)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.98	2.80	3.568	136

Symmetry codes: (i) $-x+\frac{1}{2}, y, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+1, z . C g 1$ is the $\mathrm{C} 2-\mathrm{C} 7$ ring centroid.

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. All H atoms attached to C atoms were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms and $0.98 \AA$ for methine H atoms, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atom of the amino group was located in a difference Fourier map and freely refined.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe

organic papers

IPDS-2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

