Received 7 June 2006

Accepted 12 June 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.032 wR factor = 0.079 Data-to-parameter ratio = 6.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7,7a-Dihydroisoindolo[2,1-a]pyrimidin-12-one

The crystal structure of the title compound, $C_{18}H_{12}N_2O$, is stabilized by intermolecular N-H···O hydrogen bonds and C-H··· π interactions. N-H···O hydrogen bonds generate a C(6) chain. The dihedral angle between the isoindoline group and the naphthalene ring system is 24.96 (12)°.

Comment

The present work is part of a structural study of compounds of 3-substituted phthalides (Odabaşoğlu & Büyükgüngör, 2006). When we used phthaldehydic acid (2-formylbenzoic acid) and naphthalene-1,8-diamine as starting materials, aiming to synthesize 3-[(8-aminonaphthalen-1-yl)methyl] isobenzofuran-1(3H)-one, (II), we obtained the title compound, (I), unexpectedly (Fig. 1 and Table 1).

The isoindoline group (C1–C8/N1) and naphthalene ring system are planar, the largest deviations from the mean planes being 0.029 (2) and 0.012 (3) Å for atoms N1 and C10, respectively. The crystal packing is stabilized by intermolecular N–H···O hydrogen bonds, which generate a C(6) chain (Etter, 1990), and also by C–H···Cg1 interactions (Cg1

© 2006 International Union of Crystallography All rights reserved

Figure 1

A view of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram for (I), showing the N-H···O and C-H··· π interactions as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) $\frac{1}{2} - x$, y, $\frac{1}{2} + z$.]

is the C2-C7 ring centroid; Fig. 2 and Table 2). The dihedral angle between the isoindoline group and the naphthalene ring system is 24.96 (12)°.

Experimental

The title compound was prepared (see scheme in Comment) as described by Odabaşoğlu & Büyükgüngör (2006) using phthaldehydic acid (2-formylbenzoic acid) and naphthalene-1,8-diamine as starting materials (yield 95%; m.p. 534-535 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

$C_{18}H_{12}N_2O$
$M_r = 272.30$
Orthorhombic, Pca21
a = 19.8550 (13) Å
b = 4.7939 (3) Å
c = 13.6612 (13) Å
$V = 1300.31 (17) \text{ Å}^3$

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.011327 reflections 195 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

C1-O1	1.228 (3)	C8-N1	1.466 (3)
C1-N1	1.362 (3)	C9-N2	1.408 (3)
C8-N2	1.443 (3)	C17-N1	1.405 (3)
N1-C1-C2	106.14 (19)	N1-C8-C7	102.40 (17)
N2-C8-N1	108.83 (15)	C1-N1-C17	129.75 (19)
N2-C8-C7	114.97 (19)	C9-N2-C8	112.93 (18)
C16-C17-N1-C1	23.2 (4)	C7-C8-N2-C9	170.29 (17)
N2-C8-N1-C17	-52.9 (2)		

Table 2		
Hvdrogen-bond	geometry	(Å.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N2 - H2 \cdots O1^{i} \\ C8 - H8 \cdots Cg1^{ii} \end{array}}$	0.89 (3)	2.17 (3)	2.959 (3)	148 (2)
	0.98	2.80	3.568	136

Symmetry codes: (i) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, -y + 1, z. Cg1 is the C2-C7 ring centroid.

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. All H atoms attached to C atoms were treated as riding on their parent atoms, with C-H = 0.93 Å for aromatic H atoms and 0.98 Å for methine H atoms, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom of the amino group was located in a difference Fourier map and freely refined.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe

 $T_{\min} = 0.945, T_{\max} = 0.981$

Refinement on F^2

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KPlate, light brown $0.62 \times 0.47 \times 0.21 \text{ mm}$

 $D_x = 1.391 \text{ Mg m}^{-3}$

Z = 4

12797 measured reflections 1327 independent reflections 1146 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$ $\theta_{\rm max} = 26.0^{\circ}$

 $w = 1/[\sigma^2(F_o^2) + (0.056P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.11 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.022 (3)

IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.